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Abstract. We discuss the investigation of the strange meson production in proton–
proton (pp) and proton–nucleus (pA) reactions within an effective Lagrangian model. The
kaon production proceeds mainly via excitations of N∗(1650), N∗(1710), and N∗(1720)
resonant intermediate nucleonic states, in the collision of two initial state nucleons. There-
fore, the strangeness production is expected to provide information about the resonances
lying at higher excitation energies. For beam energies very close to the kaon production
threshold the hyperon–proton final state interaction effects are quite important. Thus,
these studies provide a check on the models of hyperon–nucleon interactions. The in-
medium production of kaons shows strong sensitivity to the self-energies of the interme-
diate mesons.
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1. Introduction

In the low-energy domain, quantum chromodynamics (QCD) is not amenable to the
perturbation theory techniques. A compelling description of the QCD in this region
could be achieved through Wilson’s lattice guage theory [1]. These theories provide
the most promising approach for the theoretical predictions of the properties of the
hadronic ground states and also of their excited states. However, due to enormous
computing power necessary for the numerical treatment, lattice QCD has only
started to be able to describe baryon resonance masses and decay widths [2–4]. To
simplify the problem a large number of quark models for hadrons (see, eg. [5]) have
been developed which aim at predicting the properties of hadrons by reducing the
complexity of the strongly self-interacting multi-quark-gluon system to an effective
two- or three-quark system.

On the experimental side, the low-energy behavior of QCD is mostly addressed
indirectly. The nucleon is excited with the help of a hadronic (nucleon or meson)
or an electromagnetic (photon or electron) probe. However, due to extremely short
life-time of the excited hadron states, measurement of only their decay products is
possible. Consequently, experiments for investigating the inner structure of hadrons
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have focused on meson production of the nucleon. Since, lattice QCD calculations
are still far from being amiable to solutions for low and intermediate energy scat-
tering reactions, it is necessary to use effective methods for the description of the
dynamical structure of these processes. Such effective methods account for the in-
ner structure of baryons by introducing explicitly baryon resonance states, whose
properties are extracted by comparison with the experimental observables. The
ultimate goal is to compare the values extracted in this way with those predicted
by the lattice QCD calculations.

In recent years, there has been a considerable amount of interest in the study of
the strangeness production reactions in proton–proton (pp) collisions. This is ex-
pected to provide information on the manifestation of QCD in the non-perturbative
regime of energies larger than those of the low-energy pion physics where the low-
energy theorem and partial conservation of axial current (PCAC) constraints pro-
vide a useful insight into the relevant physics [6]. The strangeness quantum number
introduced by this reaction leads to new degrees of freedom into this domain which
are expected to probe the admixture of s̄s quark pairs in the nucleon wave func-
tion [7] and also the hyperon–nucleon and hyperon–strange meson interactions [8,9].

The elementary nucleon–nucleon–strange meson production cross-sections are the
most important ingredients in the transport model studies of the K+-meson pro-
duction in the nucleus–nucleus collisions, which provide information on not only
the initial collision dynamics but also the nuclear equation of state at high den-
sity [10–17]. Furthermore, the enhancement in the strangeness production has been
proposed as a signature for the formation of the quark-gluon plasma in high energy
nucleus–nucleus collisions [18,19]. The understanding of the elementary reactions
is a doorway to the investigation of the production of hypernuclei in reactions like
A(p,K+)ΛB, where the hypernucleus ΛB has the same neutron and proton numbers
as the target nucleus A, with one hyperon added.

The measurements performed in the late 1960s and 1970s provided the data on
the total cross-sections for the associated hyperon (Y )–kaon production at beam
momenta larger than 2.80 GeV/c (these cross-sections are listed in ref. [20]). With
the advent of the high-duty proton-synchrotron (COSY) at the Forschungszen-
trum, Jülich, it has become possible to perform systematic studies of the associated
strangeness production at beam momenta very close to the reaction threshold (see,
e.g., ref. [21] for a comprehensive review). At the near-threshold beam energies,
the final state interaction (FSI) effects among the outgoing particles are significant.
Therefore, the new set of data are expected to probe the hyperon–nucleon and
hyperon–strange meson interactions as well.

A very interesting result of the studies performed by the COSY-11 Collaboration
is that the ratio (R) of the total cross-sections for the pp → pΛK+ and pp → pΣ0K+

reactions (to be referred to as ΛK+ and Σ0K+ reactions, respectively) at the same
excess energy (defined as ε =

√
s−mp−mY −mK , with mp, mY and mK being the

masses of proton, hyperon, and kaon respectively and s the invariant mass of the
collision), is about 28+6

−9 for ε < 13 MeV [22]. This result is very intriguing because
at higher beam energies (ε ≈ 1000 MeV) this ratio is only around 2.5.

Several calculations have been reported [23–25] to explain this result. Assum-
ing that the π- and K-exchange processes are the only mechanism leading to
the strangeness production, Gasparian et al [23] show, within a (non-relativistic)
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distorted wave Born approximation (DWBA) model, that while the ΛK+ reaction
is dominated by the K-exchange only, both K- and π-exchange processes play an
important role in the case of Σ0K+ reaction. Therefore, if the amplitudes corre-
sponding to the two exchanges in the latter case interfere destructively, the pro-
duction of Σ0 is suppressed as compared to that of Λ. It should however, be noted
that in ref. [24], K- and π-exchange amplitudes are reported to be of similar mag-
nitudes for both ΛK+ and Σ0K+ reactions. In the calculations reported in ref. [25]
also the relative sign of K- and π-exchange terms is chosen solely by the criteria
of reproducing the experimental data, although in this work the theory has been
applied to describe a wider range of data which includes the polarization transfer
results of the DISTO experiment [26] and the missing mass distribution obtained
in the inclusive K+ production measurements performed at SATURNE [27] apart
from the ratio R. Nevertheless, a conclusive evidence in support of the relative
signs of π- and K-exchange amplitudes being opposite to each other is still lacking.
Furthermore, other mechanisms like excitation, propagation, and decay of interme-
diate baryonic resonances which play (see, e.g., [28–30]) an important role in the
strangeness production process, have not been considered by these authors.

We have investigated the ΛK+ and Σ0K+ reactions at near-threshold as well as
higher beam energies in the framework of an effective Lagrangian approach (ELA)
[28,29,31,32]. In this theory, the initial interaction between two incoming nucleons
is modeled by an effective Lagrangian which is based on the exchange of the π-, ρ-,
ω-, and σ-mesons. The coupling constants at the nucleon–nucleon–meson vertices
are determined by directly fitting the T -matrices of the nucleon–nucleon (NN)
scattering in the relevant energy region. The ELA uses the pseudovector (PV)
coupling for the nucleon–nucleon–pion vertex which is consistent with the chiral
symmetry requirement of the quantum chromodynamics [33]. In contrast to some
earlier calculations [34], both ΛK+ and Σ0K+ reactions proceed via excitation of
the N∗(1650), N∗(1710) and N∗(1720) intermediate baryonic resonance states. The
interference terms between the amplitudes of various resonances are retained. To
describe the near-threshold data, the FSI effects in the final channel are included
within the framework of the Watson–Migdal theory [32,35]. ELA has been used
to describe rather successfully the pp → ppπ0, pp → pnπ+ [31,32], pp → pK+Y
[28,29] as well as pp → ppe+e− [36] reactions.

Within a similar approach we also investigate the (p, K+) reaction. The ini-
tial interaction between the incoming proton and a bound nucleon of the target
is described by the one-meson exchange processes. We use the same effective
Lagrangians and vertex parameters to model these interactions. The initial state
interaction between the two nucleons leads to the N∗(1650)[ 12

−], N∗(1710)[12
+],

and N∗(1720)[ 32
+] baryonic resonance intermediate states. The vertex parameters

here too are the same as those used in the description of the elementary reaction.

2. Effective Lagrangian model

The idea of the effective Lagrangian models is to account for the symmetries of
the QCD but including only effective degrees of freedom instead of quarks. These
effective degrees of freedom are modeled by baryons and mesons known to exist as
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Figure 1. Feynman diagrams for K+Y production in pp collisions. The
diagram on the left shows the direct process while that on the right shows the
exchange one.

(quasi-)bound quark states. The advantage is that in this way one gets a better
insight into the underlying production mechanism which makes the interpretation
of the results easier. However, due to a more complicated interaction structure,
the meeting of the physical constraints like unitarity and analyticity becomes tech-
nically more involved. In fact, almost all the effective Lagrangian models are not
analytic, many of them are not even unitary.

In our effective Lagrangian model, we consider the tree-level structure (figure
1) of the amplitudes for the associated K+Y production in proton–proton colli-
sions, which proceeds via the excitation of the N∗(1650)[ 12

−], N∗(1710)[ 12
+] and

N∗(1720)[32
+] intermediate resonances. The amplitudes are calculated by a sum-

mation of the Feynman diagrams generated by means of the effective Lagrangians
at (a) the nucleon–nucleon–meson, (b) the resonance–nucleon–meson, and (c) the
resonance–K+–hyperon vertices. The assumption here is that the contributions of
the higher-order diagrams are negligible or can be absorbed in the form factors of
the first-order diagrams. The parameters for NN vertices are determined by fitting
the NN elastic scattering T matrix with an effective NN interaction based on the
π-, ρ-, ω- and σ-meson exchanges. The effective meson–NN Lagrangians are

LNNπ = −gNNπ

2mN
Ψ̄Nγ5γµτ · (∂µΦπ)ΨN . (1)

LNNρ = −gNNρΨ̄N

(
γµ +

kρ

2mN
σµν∂ν

)
τ · ρµΨN . (2)

LNNω = −gNNωΨ̄N

(
γµ +

kω

2mN
σµν∂ν

)
ωµΨN . (3)

LNNσ = gNNσΨ̄NσΨN . (4)

We have used the notations and conventions of Bjorken and Drell [37]. In eq. (1),
mN denotes the nucleon mass. Note that we have used a PV coupling for the
NNπ vertex which is consistent with the chiral symmetry requirement. Since we
use these Lagrangians to directly model the T -matrix, we have also included a
nucleon–nucleon–axial-vector–isovector vertex, with the effective Lagrangian given
by
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LNNA = gNNAΨ̄γ5γµτΨ ·Aµ, (5)

where A represents the axial-vector meson field. This term is introduced because
in the limit of large axial meson mass (mA) it cures the unphysical behavior in the
angular distribution of NN scattering caused by the contact term in the one-pion
exchange amplitude [38], if gNNA is chosen to be

gNNA =
1√
3
mA

(
fπ

mπ

)
, (6)

with very large (ÀmN ) mA. fπ in eq. (6) is related to gNNπ as fπ = ( gNNπ

2mN
)mπ.

We introduce, at each interaction vertex, the form factor

FNN
i =

(
λ2

i −m2
i

λ2
i − q2

i

)
, i = π, ρ, σ, ω, (7)

where qi and mi are the four momentum and mass of the ith exchanged meson,
respectively. The form factors suppress the contributions of high momenta and the
parameter λi, which governs the range of suppression, can be related to the hadron
size. Since NN elastic scattering cross-sections decrease gradually with the beam
energy (beyond a certain value), we take energy-dependent meson–nucleon coupling
constants of the following form:

g(
√

s) = g0 exp(−`
√

s), (8)

in order to reproduce these data in the entire range of beam energies. The para-
meters, g0, λ and ` were determined by fitting to the elastic proton–proton and
proton–neutron scattering data at beam energies in the range of 400 MeV to 4.0
GeV [31,38]. It may be noted that this procedure fixes also the signs of the effective
Lagrangians (eqs. (1)–(5)). The values of various parameters are given in table 1
of ref. [28]. The same parameters for these vertices were also used in the calcula-
tions of the pion and the dilepton production in pp collisions. Thus we ensure that
the NN elastic scattering channel remains the same in the description of various
inelastic channels within this approach, as it should be.

Below 2 GeV center-of-mass (c.m.) energy, only three resonances, N∗(1650),
N∗(1710) and N∗(1720), have significant decay branching ratios into KY channels.
Therefore, we have considered only these three resonances in our calculations. The
N∗(1700) resonance having very small (and uncertain) branching ratio for the de-
cay to these channels, has been excluded. Since all the three resonances can couple
to the meson–nucleon channels considered in the previous section, we require the
effective Lagrangians for all the four resonance–nucleon–meson vertices correspond-
ing to all the included resonances. Since the mass of the strange quark is much
higher than that of the u- or d-quark, one does not expect the pion-like strict chiral
constraints for the case of other pseudoscalar mesons like η and K (to be called ζ
in the following). Thus, one has a choice of psuedoscalar (PS) or PV couplings for
the NNζ and N∗

1/2Nζ vertices (forms of the corresponding effective Lagrangians
are given in ref. [28]). The same holds for the N∗

1/2Y K vertices also.
In principle, one can select a linear combination of both and fit the PS/PV ratio

to the data. However, to minimize the number of parameters we choose either
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PS or PV coupling at a time. In the results shown below, we have used PS cou-
plings for both N∗Nπ and N∗ΛK+ vertices involving spin-1/2 resonances of even
and odd parities. Calculations have also been performed with the corresponding
PV couplings. The cross-sections calculated with this option for the N∗

1/2Y K ver-
tex deviate very little from those obtained with the corresponding PS couplings.
However, data show a clear preference for the PS coupling at the N∗

1/2Nπ vertices.
The coupling constants for the vertices involving resonances are determined from

the experimentally observed quantities such as branching ratios for their decays
to corresponding channels. It may however, be noted that such a procedure can-
not be used to determine the coupling constant for the N∗(1650)ΣK vertices, as
the on-shell decays of this resonance to ΣK channel are inhibited. Therefore, we
have tried to determine this coupling constant by fitting the available data on the
π+p → Σ+K+, π−p → Σ0K0 and π−p → Σ−K+ reactions in an effective La-
grangian coupled channels approach [39,40], where all the available data for the
transitions from πN to five meson–baryon final states, πN , ππN , ηN , KΛ and KΣ
are simultaneously analyzed for center-of-mass energies ranging from threshold to
2 GeV. In this analysis, all the baryonic resonances with spin ≤ 3

2 up to excitation
energies of 2 GeV are included as intermediate states. Since the resonances con-
sidered in this study have no known branching ratios for the decay into the Nω
channel, we determine the coupling constants for the N∗Nω vertices by the strict
vector meson dominance (VMD) hypothesis [41], which is based essentially on the
assumption that the coupling of photons on hadrons takes place through a vector
meson.

It should be stressed that the branching ratios determine only the square of
the corresponding coupling constants; thus their signs remain uncertain in this
method. Predictions from independent calculations (e.g the quark model) can,
however, be used to constrain these signs. The magnitude as well as signs of
the coupling constants for the N∗Nπ, N∗ΛK, N∗Nρ and N∗N(ππ)s-wave vertices
were determined by Feuster and Mosel [39] and Manley and Saleski [42] in their
analysis of the pion–nucleon data involving the final states πN , ππN , ηN and
KΛ. Predictions for some of these quantities are also given in the constituent
quark model calculations of Capstick and Roberts [43]. Guided by the results of
these studies, we have chosen the positive sign for the coupling constants for these
vertices. Unfortunately, the quark model calculations for the N∗Nω vertices are still
sparse and an unambiguous prediction for the signs of the corresponding coupling
constants may not be possible at this stage [44]. Nevertheless, we have chosen a
positive sign for the coupling constants for these vertices as well. Values of all the
coupling constants are given in ref. [28].

After having established the effective Lagrangians, coupling constants and form of
the propagators (which are given in ref. [28]), it is straightforward to write down the
amplitudes for various diagrams associated with the pp → pY K reactions which
can be calculated numerically by following e.g. the techniques discussed in [31].
The isospin part is treated separately. This gives rise to a constant factor for each
graph, which is unity for the reaction under study. It should be noted that the
signs of various amplitudes are fixed by those of the effective Lagrangian densities,
coupling constants and propagators as described above. These signs are not allowed
to change anywhere in the calculations.
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In the present form of our effective Lagrangian theory, the energy dependence
of the cross-section due to FSI is separated from that of the primary production
amplitude and the total amplitude is written as

Afi = Mfi(pp → pY K+) · Tff , (9)

where Mfi (pp → pY K+) is the primary associated Y K production amplitude,
while Tff describes the re-scattering among the final particles which goes to unity
in the limit of no FSI. The latter is taken to be the coherent sum of the two-
body on-mass-shell elastic scattering amplitudes ti (with i going from 1 to 3), of
the interacting particle pairs j − k in the final channel. This type of approach
has been used earlier to describe the pion [32,45,46], η-meson [47–49], ΛK+ [28]
and φ-meson [50] production in pp collisions. An assumption inherent in eq. (9) is
that the reaction takes place over a small region of space (which is fulfilled rather
well in near-threshold reactions involving heavy mesons). Under this condition the
amplitudes ti can be expressed in terms of the inverse of the Jost function [32,35]
which has been calculated using a Coulomb modified effective range expansion of
the phase-shift [51]. The required effective range and scattering length parameters
are given in refs [28,29].

3. Kaon production in proton–proton collisions

The total cross-sections for the ΛK+ and Σ0K+ reactions as a function of the excess
energy are shown in figure 2. The calculations are the coherent sum of all resonance
excitation and meson exchange processes as described earlier. In both cases a good
agreement is obtained between theory and the data available from the COSY-11
Collaboration. Keeping in mind the fact that all parameters of the model, except
for those of N∗Y p vertices and the FSI, were the same in the two calculations and
that no parameter was freely varied, this agreement is quite satisfactory. It should
be noted that we do not require to introduce arbitrary normalization constants to
get the agreement between calculations and the data. We also show in this figure
the results obtained without including the FSI effects (dashed line). It can be seen
that the FSI effects are vital for a proper description of the experimental data in
both the cases.

In figure 3, we have investigated the role of various meson exchange processes in
describing the total cross-sections. The dashed, long-dashed, dashed–dotted, and
solid curves with black squares represent the contributions of π-, ρ-, ω- and σ-meson
exchanges, respectively. The contribution of the heavy axial meson exchange is not
shown in this figure as it is negligibly small. The coherent sum of all the meson
exchange processes is shown by the solid line. It is clear that the pion exchange
graphs dominate the production process for both the reactions in the entire range of
beam energies. Contributions of ρ- and ω-meson exchanges are almost insignificant.
On the other hand, the σ-meson exchange, which models the correlated s-wave two-
pion exchange process and provides about 2/3 of this exchange in the low-energy
NN interaction, plays a relatively more important role. This observation has also
been made in the case of the NN → NNπ reaction [52–54,31].

Pramana – J. Phys., Vol. 66, No. 4, April 2006 771



Radhey Shyam

0 10 20 30 40 50 60
EXCESS ENERGY (MeV)

10−2
10−1

100
101

102
103
104

σ to
t (

nb
)

10−1

100

101

102

103

σ to
t(n

b)

p + p → p + K
+
+ Σ0

p + p → p + K
+
+ Λ

Figure 2. Comparison of the calculated
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The individual contributions of various nucleon resonances to the total cross-
sections of the two reactions are shown in figure 4. We note that in both the cases,
the cross-section is dominated by the N∗(1650) resonance excitation for ε < 30
MeV. Since N∗(1650) is the lowest energy baryonic resonance having branching
ratios for the decay to Y K+ channels, its dominance in these reactions at beam
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Figure 4. Contributions of N∗(1650) (dashed line), N∗(1710) (solid line with
black squares) and N∗(1720) (dashed–dotted line) baryonic resonances to the
total cross-section for the two reactions studied in figure 2. Their coherent
sum is shown by the solid line. The solid circles show the experimental data
taken from ref. [22].

energies very close to the kaon production threshold is to be expected. In the near-
threshold region the relative dominance of various resonances is determined by the
dynamics of the reaction where the difference of about 60 MeV in excitation energies
of N∗(1650) and N∗(1710) resonances plays a crucial role. However, for ε values
between 30 and 60 MeV, while the pp → pK+Λ reaction continues to be dominated
by the N∗(1650) excitation, the pp → pK+Σ0 reaction also gets significant contri-
butions from the N∗(1710) and N∗(1720) resonances. This difference in the role of
the three resonances in the two cases can be understood in the following way. For a
resonance to contribute significantly, we should have mY +mK +ε ≥ mN∗ +ΓN∗/2,
where mN∗ and ΓN∗ are the mass and width of the resonance, respectively. There-
fore, in the region of excess energies ≥ Q[= (mN∗ + ΓN∗/2) − (mY + mK)], the
particular resonance N∗ should contribute significantly. The values of Q for the
pp → pK+Λ reaction are 115 MeV, 150 MeV and 185 MeV, for the N∗(1650),
N∗(1710) and N∗(1720) resonances, respectively. On the other hand, for the
pp → pK+Σ0 case, they are 36 MeV, 72 MeV and 105 MeV, respectively for these
three resonances. Therefore, contributions of the N∗(1710) and N∗(1720) reso-
nance excitations are negligibly small for the K+Λ production in the entire energy
range of the COSY-11 data (i.e., for ε ≤ 60 MeV) while they are significant for the
K+Σ0 case for ε > 30 MeV. It would be helpful to have data on the invariant mass
spectrum at these excess energies in order to confirm these theoretical observations.

In figure 5, we compare our calculations with the data for the ratio R as a function
of ε. We have shown here the results for excess energies up to 60 MeV, where the
COSY-11 data are available. It is clear that our calculations can describe well the
trend of the fall-off of R as a function of the excess energy. It should be noted that
FSI effects account for about 60–80% of the observed ratio for ε < 30 MeV and
about 50% beyond this energy. Therefore, not all of the observed value of R at
these beam energies can be accounted for by the FSI effects, which is in agreement
with the observation made in [23]. It should again be emphasized that without
considering the contributions of the N∗(1650) resonance for the Σ0K+ reactions,
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the calculated ratio would be at least an order of magnitude larger. Therefore,
these data are indeed sensitive to the details of the reaction mechanism. At higher
beam energies (ε > 300 MeV), values of R obtained with and without FSI effects
are almost identical. In this region the reaction mechanism is different; here all the
three resonances contribute in one way or the other, their interference terms are
significant [28], and FSI related effects are unimportant.

4. Kaon production in proton–nucleus collisions

The study of meson production in proton–nucleus collisions is an interesting tool
to investigate the influence of nuclear medium on the properties of hadrons and
their production processes. Since the mass of kaon is larger than that of the pion,
medium effects play a vital role in its production in pA collisions.

The kaon production reactions of the type p+A(N, Z) → ΛB(N, Z)+K+ (where
N and Z are the neutron and proton numbers, respectively, in the target nucleus A),
leads to the production of the Λ-hypernucleus ΛB(N, Z). The study of this reaction,
therefore, is likely to lead to an understanding of the hypernuclear spectroscopy.
At the same time, since this reaction involves a large momentum transfer to the
nucleus, it provides an appropriate tool to learn about the behaviour of the nuclear
many-body wave function at higher momenta which is not very well-known. We
present here some results of our investigation for this reaction which will be referred
to as A(p, K+)ΛB reaction.

The model used to describe the (p,K+) reaction is similar to the effective La-
grangian approach described above (see, figures 6a and 6b). The initial interaction
between the incoming proton and a bound nucleon of the target is described by the
one-meson exchange mechanism. We use the same effective Lagrangians and vertex
parameters to model these interactions. The initial state interaction between the
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Figure 6. Graphical representation of the A(p, K+)ΛB reaction models. The
elliptic shaded area represent the optical model interactions in the incoming
and outgoing channels.

two nucleons leads to the N∗(1650)[ 12
−], N∗(1710)[ 12

+] and N∗(1720)[ 32
+] baryonic

resonance intermediate states. The vertex parameters here too are the same as
those used in the description of the elementary reactions. It may be noted that in
this model there are altogether three active bound state baryon wave functions tak-
ing part in the reaction process allowing the large momentum transfer to be shared
among the three baryons. Consequently, the sensitivity of the model is shifted from
high momentum parts of the bound state wave functions (not very well-known) to
those at relatively lower momenta where they are rather well-known from the (e, e′p)
and (γ, p) experiments (see, e.g., [55]) and are relatively larger. This type of two-
nucleon model has recently been applied to the study of the A(p,K+)ΛB reaction
in refs [56,57] where to reduce the computational complications plane waves have
been used to describe the relative motions of incoming proton and outgoing kaon.

In performing calculations for the cross-sections of the A(p, K+)ΛB reactions,
one requires spinors for the final bound hypernuclear state (corresponding to mo-
mentum pΛ) and for two intermediate nucleonic states (corresponding to momenta
p1 and p2). These are determined by assuming them to be pure single-particle
or single-hole states with the core remaining inert. The quantum numbers of the
two intermediate states are taken to be the same. The spinors in the momentum
space are obtained by Fourier transformation of the corresponding coordinate space
spinors which are obtained by solving the Dirac equation with potential fields con-
sisting of an attractive scalar part and a vector part with the Woods–Saxon geom-
etry. With a fixed set of geometry parameters, the depths of the potentials are
searched in order to reproduce the binding energies of the particular state [57].

To have an idea of the relative strengths of the upper and lower components of
the Dirac spinors as a function of the transferred momentum, we show, e.g., in fig-
ure 7 the 0p3/2 Λ hyperon spinors in momentum space for the 41

ΛCa hypernucleus.
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Figure 7. (a) Momentum space spinors (WF) for 0p3/2 Λ orbit in 41
ΛCa

hypernucleus. |F (q)| and |G(q)| are the upper and lower components of the
spinor, respectively. (b) Momentum distribution (Mom. Distr.) for the same
state calculated with wave functions shown in (a).

We note that only for momenta <1.5 fm−1, is the lower component of the spinor
substantially smaller than the upper component. In the region of momentum trans-
fer pertinent to exclusive kaon production in proton–nucleus collisions, the magni-
tudes of the upper and lower components are of the same order of magnitude. This
clearly demonstrates that a fully relativistic approach is essential for an accurate
description of this reaction.

The self-energies of the exchange mesons are other input quantities required in
the calculations of the A(p,K+)ΛB reaction. They take into account the medium
effects on the intermediate meson propagation. The ρ and ω self-energies have
been calculated by following the procedure described in ref. [58]. The pion self-
energy is more crucial as one-pion exchange diagrams dominate the (p,K+) cross-
sections. This is obtained by calculating the contribution of particle–hole (ph)
and delta–hole (∆h) excitations produced by the propagating pion [59]. This has
been renormalized by including the short-range repulsion effects by introducing the
constant Landau–Migdal parameter g′ which is taken to be the same for ph–ph
and ∆h–ph and ∆h–∆h correlations which is a common choice. The parameter
g′, acting in the spin–isospin channel, is supposed to mock up the complicated
density-dependent effective interaction between particles and holes in the nuclear
medium. Most estimates give a value of g′ between 0.5–0.7. The sensitivity of the
pion self-energy [Π(q)] to the g′ parameter is studied in ref. [56].

In figure 8, we show the kaon angular distributions corresponding to various
final hypernuclear states excited in the reaction 40Ca(p,K+)41ΛCa. We have taken
g′ = 0.5 throughout in this figure. It may be noted that in all the cases the diagram
6a makes a dominant contribution to the cross-sections. Clearly, the cross-sections
are quite selective about the excited hypernuclear state, being maximum for the
state of largest orbital angular momentum. This is due to the large momentum
transfer involved in this reaction. We see in this figure that in each case the angular
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Figure 8. Differential cross-section for the 40Ca(p, K+)41ΛCa reaction for the
incident proton energy of 1.5 GeV for various bound states of final hypernu-
cleus as indicated in the figure. The Λ separation energies for 0d3/2, 0d5/2,
0p1/2 and 0s1/2 states were taken to be 0.7529, 1.5435, 9.1400 and 17.8802
MeV, respectively. The quantum number and the binding energy of the two
intermediate nucleon states were 0d3/2 and 8.3282 MeV, respectively.

distribution has a maximum at angles larger than the zero degree and not at the zero
degree as seen in previous non-relativistic calculations of this reaction. This is the
consequence of using Dirac spinors for the bound states. There are several maxima
in the upper and lower components of the momentum space-bound spinors in the
region of large momentum transfers. Therefore, in the kaon angular distribution
the first maximum may shift to larger angles.

In figure 9, we show the dependence of our calculated cross-sections on pion
self-energy. It is interesting to note that the self-energy has a rather large effect.
We also see a surprisingly large effect on the short-range correlation (expressed
schematically by the Landau–Migdal parameter g′) on the cross-sections.

The absolute magnitudes of the cross-sections near the peak is around 1–2 nb/sr,
although the distortion effects could reduce these values as is shown in [57]. This
order-of-magnitude estimates should be useful in planning future experiments for
this reaction. As found in ref. [56], contributions from the N∗(1710) resonance
dominate the total cross-section in each case. Also the interference terms of the
amplitudes corresponding to various resonances are not negligible. It should be
emphasized that we have no freedom in choosing the relative signs of the interference
terms.

5. Summary and conclusions

In summary, our effective Lagrangian model can describe well the recent data on
pp → pΛK+ and pp → pΣ0K+ reactions. An important result is that the N∗(1650)
resonant state contributes predominantly to both these reactions at near-threshold
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Figure 9. Differential cross-section for the 40Ca(p, K+)41ΛCa(0d3/2) reaction
for the incident proton energy of 2.0 GeV. The dotted line shows the results
obtained without including the pion self-energy in the denominator of the
pion propagator while solid line, dashed line and dashed–dotted lines represent
the same calculated with pion self-energy renormalized with Landau–Migdal
parameters of 0.5, 0.6 and 0.7, respectively.

beam energies. Therefore, these reactions in this energy regime, provide an ideal
means of investigating the properties of this S11 baryonic resonance. To the extent
that the final state interaction effects in the exit channel can be accounted for by the
Watson–Migdal theory, our model is able to explain the experimentally observed
large ratio of the total cross-sections of the two reactions in the near-threshold
region.

We also investigated the A(p,K+)ΛB reaction within a similar approach. We find
that the nuclear medium corrections to the intermediate pion propagator introduce
large effects on the kaon differential cross-sections. There is also the sensitivity of
the cross-sections to the short-range correlation parameter g′ in the pion self-energy.
Thus, (p,K+) reactions may provide an interesting alternative tool to investigate
the medium corrections on the pion propagation in nuclei. Moreover, the study of
the (p,K+) reaction is attractive as it provides a way to study the spectroscopy of
the Λ hypernuclear states. This reaction should be measurable at the COSY facility
in Forschungszentrum Jülich. The characteristics of these cross-sections predicted
by us should be helpful in planning such experiments.
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